Product Life Cycle Analysis (LCA) is a systematic study that quantifies the environmental impact of a product across all stages of its value chain.
Its implementation can be complex, but the outcome of the analysis helps companies make critical decisions, such as developing more sustainable products or selecting more efficient suppliers to reduce their environmental impact.
Furthermore, an LCA helps companies showcase their sustainability efforts. It demonstrates a commitment to the environment, enhancing market reputation and brand value. This can translate into greater customer loyalty, attracting talent, and securing financial investment.
Product carbon footprint analysis guides companies to identify cost-saving opportunities, optimize energy and resource use, improve supply chain efficiency, and minimize waste.
In this guide, we will walk through the concept of Life Cycle Analysis step by step and present a real anonymized LCA example.
01
What is Product Life Cycle Analysis (LCA)?
Product Life Cycle Analysis (LCA) is the evaluation of the environmental impact of a product or service throughout all stages of its life cycle.

Analysis:
What is analyzed in this type of study is the environmental impact of our product. Examples of environmental impact include the amount of greenhouse gas emissions, acidification, fossil resource use, etc.
Life cycle:
Every product, from something as simple as a glass to a commercial airplane, is "born," goes through a "life," and when it is no longer useful, its life ends. A common example of a life cycle in manufacturing has 5 stages, which are:
- Material extraction.
- Production.
- Packaging and distribution.
- Use and sale.
- Waste generation and treatment.
Ese ciclo de vida refleja un modelo lineal de producción, también conocido como ciclo de vida de cuna a tumba. Pero hay otros modelos dónde se puede hacer un análisis de ciclo de vida, dependiendo de lo que más importa a cada empresa o producto.
Product:
This life cycle reflects a linear production model, also known as a cradle-to-grave life cycle. However, there are other models where life cycle analysis can be conducted, depending on what matters most to each company or product.
02
Different Product Life Cycle Models
Depending on the data you have or the scope of the analysis, you can include or exclude phases from the life cycle analysis. Let’s consider some of the most well-known models that you can choose from for your LCA.

A. Cradle to Gate
This type of LCA focuses on all stages from the extraction of raw materials to the product leaving the factory. It includes: raw material extraction, material processing, and product manufacturing.
It is useful for manufacturers who want to understand and improve the environmental impacts of their production processes before the product reaches the end consumer.
This approach allows companies to identify areas of improvement in their internal processes and reduce their environmental footprint during the production phase.
B. Cradle to Grave
The cradle-to-grave life cycle analysis is the most comprehensive, covering all stages from the extraction of raw materials to the final disposal of the product. It includes raw material extraction, processing, manufacturing, distribution, product use, and its final disposal (recycling, incineration, or landfill).
This approach provides a holistic view of the total environmental impact of a product throughout its lifetime, allowing companies and designers to make informed decisions to minimize environmental impacts at each stage.
C. Gate to Gate
This analysis focuses on a single production process within a larger supply chain, from the entry of materials into the factory to the exit of the finished product. It concentrates on operations within a specific production process or a particular part of the production chain.
It is especially useful for identifying and improving environmental impacts within a specific phase of production, allowing for the optimization of individual processes without considering the entire life cycle of the product.
D. Cradle to Cradle
This type of life cycle analysis is a key concept of the Circular Economy. It focuses on all stages of the product life cycle, ensuring that materials are reused indefinitely in new cycles. Instead of ending with final disposal, products go through recycling that allows the materials to be reused to manufacture new products, thus closing the loop.
Also known as closed-loop recycling, it promotes sustainable design, where products are created to be fully recyclable, eliminating waste and continuously utilizing all materials.
03
What is measured in a life cycle analysis?
Industrial processes and activities consume various resources throughout the value chain, emitting different substances into the environment. Some of these interactions with the environment are immediate and can occur near the company’s physical location, while others may happen far away or take some time, due to the extent of global supply chains.
An LCA helps determine the extent to which these exchanges of materials with the environment are harmful to both natural ecosystems and human health. Thus, there are different categories of environmental impact, in other words, the areas that are affected by resource consumption and the emissions produced.
04
The 4 Steps of a Life Cycle Analysis (LCA)
A product life cycle analysis is carried out in 4 fundamental steps:
- Goal and Scope Definition
- Inventory Analysis (LCI)
- Impact Assessment (LCIA)
- Interpretation of Results

1. Goal and Scope Definition
In this stage, the scope to be measured is defined (cradle-to-grave, cradle-to-gate, etc.). Additionally, it is important to consider the goal of the measurement. The objective may be to obtain broader environmental information, design more eco-friendly products, or comply with regulations.
The goal of the analysis will largely influence the information that needs to be collected later and the strategy to be employed in modeling. Furthermore, the company may generate an Environmental Product Declaration (EPD) if they wish to compare products with others in the industry or obtain environmental labels, following industry-specific standards.
2. Inventory Analysis (LCI)
This is the data collection phase. The goal is to quantify everything that enters and leaves our system. The system is the boundary that encompasses the product and all the processes required to produce it.
Some examples of inputs and outputs are:
- Inputs: raw materials or resources, energy, water.
- Outputs: air, water, and soil emissions, waste, and by-products.
Some examples of data commonly requested during this stage include:

3. Impact Assessment (LCIA)
Once all relevant data has been collected, the analysis phase begins. At this point, the data should be analyzed based on the potential environmental impacts of each activity. Then, all values are summed to obtain totals for the impact categories.
The data used for the analysis comes from international databases that contain standardized information about inputs, products, and the associated environmental impacts of various processes and activities across different industries. At Dcycle, we primarily use Ecoinvent to carry out life cycle analyses due to its global recognition and high reliability.
4. Interpretation of results
The final phase involves transforming the results from the impact analysis into a format that is applicable and aligned with the objective defined at the beginning. This could be a report, the implementation and verification of an ISO certification, or the redesign of a product to make it more sustainable and reduce its environmental impact.
An ISO is a global standard applicable to various organizations that covers document management, risk management, and regulatory compliance, promoting continuous improvement. In terms of sustainability, one of the most well-known is ISO 14001, which aims to achieve environmental goals, including those set by the United Nations for Sustainable Development.
05
Who needs a life cycle analysis? And why?
An LCA can be used by different departments within a company and for various purposes, but the main uses are usually:

Compliance
Some companies need to conduct life cycle analyses of their products to comply with regulations and continue operating, or to obtain certifications and verifications from third parties.

Ecodesign
With LCAs, companies can obtain data that helps model scenarios and design products using materials and production processes with a lower environmental impact. The impact can be analyzed by material, impact area, and even suppliers.
.png)
Marketing
Many companies use their LCAs as a brand positioning strategy, especially those that sell directly to consumers, such as clothing brands and consumer goods. It’s a way to create a commitment with consumers that the company cares about the future and environmental impact. The choice of more sustainable materials, such as organic cotton and recyclable fabrics, for example, is what leads many consumers to choose a particular brand.

Sales
The same applies to companies that sell their products to other businesses. Increasingly, large companies are demanding sustainability data from their suppliers and choosing the most sustainable companies. For example, Coca-Cola has set the goal that 100% of the main ingredients and raw materials for producing beverages and packaging be sustainably sourced. This means that all companies supplying raw materials to Coca-Cola, regardless of their position in the supply chain, must certify their sustainability level to continue working with the multinational.

Tenders
The Public Sector Contracts Law in Spain allows for the inclusion of environmental criteria throughout the entire procurement process. This means that many companies are required to assess the environmental impact of their products in order to gain more points in public tenders and increase their chances of winning contracts. This can also apply to certain state subsidies.
Read our blog, where we have covered the main benefits for your company of conducting a product life cycle analysis.
06
Examples of Life Cycle Analysis for Each Industry
Life cycle analyses have different applications for each sector. Below, we provide examples of the main use cases of LCA for some industries.
07
What is an Environmental Product Declaration (EPD)?
The Environmental Product Declaration (EPD) is a statement that provides information about the life cycle analysis of a product in accordance with the International Standard UNE-EN ISO 14025.
It is considered a Type III environmental declaration. An EPD is built upon the Life Cycle Analysis, offering a scientific and verified way to assess the environmental impact of a product; however, an EPD involves adhering to more specific requirements depending on the type of product being analyzed.
A Type III environmental declaration is created and registered within a program, such as the International EPD System, and is publicly available.
In physical terms, an EPD consists of two key documents:
- The LCA Report, which is a systematic and comprehensive document of the project or analysis, including all calculations made and the necessary justifications. This report is not part of public communication.
- The EPD itself, which is public and contains a summary of the methodology followed in the LCA and details of the resulting environmental impacts.
08
Main challenges in conducting a life cycle analysis
Although more and more companies are using life cycle analyses of their products and services, the calculations are somewhat complex and require expertise and technical knowledge. Some of the main challenges in conducting an LCA are:
1. Document and Data Management
Ideally, the data used in analyses should be real data, i.e., primary data. However, often a large portion of this data is in the hands of suppliers or distributors, and to obtain it, it is necessary to request inventory data from these stakeholders who are part of the value chain.
For this reason, LCAs are often calculated using secondary data. The European Commission defines secondary data as "data that is not collected, measured, or estimated directly, but is obtained from a third-party life cycle inventory database." These databases provide existing environmental data on major supply chains.
The fact is that there are many documents and data, and companies generally lack experience in managing inventory databases, which is one of the main challenges of an LCA.
2. High Technical Complexity
Some companies are already accustomed to managing environmental data and documents, such as carbon footprint calculations in Scopes 1, 2, and 3. However, calculating the environmental impact categories of a product is more complex and requires solid technical knowledge and a deep understanding of the methodologies to be used.
Furthermore, LCA modeling involves using specialized software to convert the collected data into environmental impact estimates. Interpreting the results also requires a deep understanding of environmental data.
In many cases, extensive statistical knowledge is also necessary when handling information from databases and aiming to reduce uncertainty.
3. Compliance with Databases
LThe databases from which environmental impacts associated with processes and activities are extracted are very complex and use highly technical nomenclature.
Therefore, one of the main challenges is translating the common language of materials and processes in the industry into the identification that material or process would have within the database.
In general, three main difficulties arise:
- The databases use very technical names.
- The databases do not always have information on the material or activity needed, requiring an approximation to be found.
- Choosing an activity in a database depends not only on the type of material but also on other factors such as geographic location or sector specificity, as there are databases specific to certain industrial sectors.
09
How do we measure it at Dcycle?
At Dcycle, we combine your internal data with verified information from official databases to understand the environmental impacts associated with the product. We follow the ISO 14040/44 methodology, which forms the foundation of life cycle analysis. This allows us to address any other reporting frameworks at the international level.
In the absence of primary data, i.e., data directly provided by the client, we apply statistical algorithms to reduce uncertainty and offer the highest reliability in results.
By conducting the life cycle analysis with Dcycle, you will receive: total impacts, impact distribution, as well as comparisons and equivalencies.
Check out the step-by-step process of how we conduct a life cycle analysis at Dcycle:

We are constantly improving our environmental management platform to give our clients total confidence in their carbon footprint measurements. If you'd like to check out the latest innovations from the first quarter of 2024, read our blog post.
Boost sustainability management with Dcycle.
If you still have questions about how we manage life cycle analyses on the Dcycle platform, you can see all of Dcycle's features by visiting our product page.

Acidificación
Indicador de la acidificación potencial de suelos y aguas (aumento del pH). Principalmente debido a la lluvia ácida provocada por los óxidos de nitrógeno, el dióxido de azufre y el amoníaco. Está relacionada con la muerte de las plantas, el bajo rendimiento de los cultivos, la infertilidad del suelo, la contaminación de los ecosistemas acuáticos, etc.


Cambio climático
Indicador de las emisiones de gases de efecto invernadero (GEI) que contribuyen al cambio climático en la atmósfera. Debido principalmente al dióxido de carbono, metano y óxidos de nitrógeno generados mayoritariamente por la combustión. Existen muchos más gases contribuyentes. Está relacionado con el aumento de las temperaturas y cambios de los patrones climáticos debido al efecto invernadero.


Ecotoxicidad
Indicador que mide los efectos tóxicos de los compuestos químicos en el ecosistema. Principalmente debido al uso de pesticidas y a la presencia de metales como cromo, vanadio, níquel, zinc, etc. Está relacionado con la bioacumulación de compuestos tóxicos, la muerte de organismos vivos y la alteración o perturbación de los ecosistemas.


Agotamiento de recursos fósiles
Indicador del agotamiento de los recursos fósiles no renovables. Principalmente debido al uso de estos recursos para la generación de energía en calderas o generadores. Se refiere a la preocupación de que estos recursos energéticos limitados no estén disponibles en el futuro para mantener los patrones de consumo actuales.


Eutrofización
Indicador de enriquecimiento excesivo del ecosistema de agua dulce con nutrientes. Debido a la emisión de compuestos de fósforo y nitrógeno. Generalmente causada por el uso de fertilizantes en la agricultura, pero también por procesos de combustión. Relacionado con el crecimiento excesivo de algas en las masas acuosas, la falta de oxígeno y la muerte de especies acuáticas.


Toxicidad en humanos: Cancerígeno
Indicador que mide los efectos cancerígenos de los compuestos químicos en la salud humana. Principalmente debido a compuestos como el cromo VI y el 1,4-Butanediol. Otros metales como el mercurio, el cadmio, el plomo y el arsénico también tienen potencial cancerígeno. Está relacionada con la absorción de sustancias cancerígenas, no directamente, sino a través de un medio (agua, aire o suelo).


Toxicidad en humanos: No cancerígeno
Indicador que mide los efectos negativos no cancerígenos de los compuestos químicos sobre la salud humana. Principalmente debido a metales como el zinc, el ion arsénico, el plomo y el bario, entre otros. Está relacionado con la absorción de sustancias cancerígenas, no directamente, sino a través de un medio (agua, aire o suelo).


Potencial de radiación ionizante
Indicador de exposición a la radiactividad. Debido a la radiación de materiales radiactivos como Radón-222, Carbono-14, Uranio-235, Cobalto-60, entre otros.


Ocupación de tierras para agricultura
Indicador de la utilización y transformación de tierras con potencial agrícola para otros fines. Debido a la ocupación por bosques, carreteras, zonas industriales, extracción de minerales, entre otros.


Agotamiento de elementos minerales/metálicos
Indicador del agotamiento de los recursos metálicos y minerales.Principalmente debido al uso de este tipo de materiales para la fabricación de equipos y materiales.Se relaciona con la preocupación futura de no disponer de estos recursos no renovables y muy escasos en la naturaleza.


Potencial de agotamiento de la capa de ozono
Indicador de las emisiones de gases que agotan la capa de ozono y la degradan.Principalmente debido al metano, el monóxido de dinitrógeno y los clorofluorocarbonos (CFC).Se relaciona con el aumento de la entrada de radiación ultravioleta, el cáncer de piel y el deterioro de las plantas.


Formación de partículas
Indicador de emisiones de partículas que pueden causar efectos adversos en la salud humana. Debido a las partículas (PM10, PM2,5) y otros compuestos precursores (NOx, SOx) emitidos principalmente durante la combustión de combustibles fósiles. Está relacionado con problemas respiratorios y daños pulmonares.


Formación fotoquímica de oxidantes: Salud humana
Indicador del efecto tóxico potencial de los gases altamente activos sobre la salud humana. Principalmente debido a las emisiones de óxidos de nitrógeno, hexano, etileno y compuestos orgánicos volátiles, que reaccionan con la luz solar para generar ozono y otros compuestos oxidantes. Está relacionado con la generación de una nube tóxica de humo y smog que, además de obstruir la visión, aumenta la incidencia de problemas respiratorios como el asma.


Formación fotoquímica de oxidantes: Ecosistemas terrestres
Indicador del potencial efecto nocivo de los gases altamente activos en los ecosistemas. Principalmente debido a las emisiones de óxidos de nitrógeno, hexano, etileno y compuestos orgánicos volátiles; que reaccionan con la luz solar para generar ozono y otros compuestos oxidantes.Se asocia con la muerte o el bajo rendimiento de los cultivos.


Uso del agua
Una función del uso del agua a lo largo de los procesos de transformación.
El uso del agua puede deberse a una miríada de fuentes, desde el uso directo en los procesos de producción hasta el uso indirecto debido a la utilización de energía hidroeléctrica.

%20(1).jpg)



Ejemplo: Análisis de ciclo de vida de un vehículo eléctrico vs. un vehículo de combustión interna.
Fases analizadas: Extracción de materias primas, fabricación de baterías, ensamblaje del vehículo, uso, mantenimiento y disposición final.
Resultados clave: Los vehículos eléctricos suelen tener mayores impactos ambientales en la fase de producción, especialmente debido a la batería, pero tienden a compensar estos impactos durante su empleo debido a menores emisiones de gases de efecto invernadero.
.jpg)
Ejemplo: Análisis de ciclo de vida de una botella de agua de plástico.
Fases analizadas: Extracción y procesamiento de materias primas (petróleo para producir plástico), fabricación de la botella, llenado y distribución, uso (consumo de agua) y disposición (reciclaje o desecho).
Resultados clave: La mayor parte del impacto ambiental se encuentra en la producción del plástico y la distribución. El reciclaje puede reducir significativamente el impacto total.

Ejemplo: Análisis de ciclo de vida de una camiseta de algodón.
Fases analizadas: Cultivo del algodón, procesamiento y fabricación de la tela, confección de la camiseta, transporte, uso (lavado y planchado) y disposición final (reciclaje o desecho).
Resultados clave: El cultivo del algodón es una fase con alto consumo de agua y pesticidas. La fase de utilización también tiene un impacto considerable debido al consumo de energía en el lavado y planchado.

Ejemplo: Análisis de ciclo de vida de un edificio residencial.
Fases analizadas: Extracción y procesamiento de materiales de construcción (cemento, acero, madera), construcción del edificio, uso (energía para calefacción, refrigeración, iluminación), mantenimiento y disposición final (demolición y reciclaje de materiales).
Resultados clave: La fase de uso, especialmente el consumo energético, suele ser la más significativa en términos de impacto ambiental. Las decisiones en el diseño y la selección de materiales pueden influir considerablemente en el impacto total del ciclo de vida.
.jpg)
Ejemplo: Análisis de ciclo de vida de una máquina de café de cápsulas.
Fases analizadas: Extracción de materiales (plásticos, metales), fabricación de la máquina y las cápsulas, ensamblaje, transporte, uso (energía para hacer café, desecho de cápsulas) y disposición final (reciclaje de la máquina, desecho de cápsulas).
Resultados clave: La fase de uso tiene un impacto significativo debido al desecho de cápsulas y el consumo de energía. Mejorar la reciclabilidad de las cápsulas y aumentar la eficiencia energética de la máquina puede reducir el impacto ambiental.

